Чтобы увидеть, почему, разберем, что понимается под "искусственным интеллектом", а затем посмотрим, какие возможны применения.
Парнас внес ясность в терминологический хаос:
Сегодня в ходу два совершенно разных определения ИИ. ИИ-1: использование компьютеров для решения задач, которые раньше могли быть решены только с помощью человеческого интеллекта. ИИ-2: использование специальных приемов программирования, известных как эвристическое, или основанное на правилах, программирование. При таком подходе изучают действия экспертов, чтобы определить, какими эвристиками и практическим правилами они пользуются при решении задач... Программа корректируется для решения задач так, как, по-видимому, ее решает человек.
У первого определения скользкий смысл... Кое-что укладывается сегодня в определение ИИ-1, но как только мы видим работу программы и понимаем задачу, мы уже не думаем о ней, как о ИИ... К несчастью, я не вижу ядра методов, которые уникальны в этой области... По большей части методы проблемно-ориентированны, и для их переноса требуются известные абстракция и творчество.5
Я полностью согласен с этой критикой. Приемы, используемые для распознавания речи, выказывают мало сходства с методами распознавания изображений, при этом в экспертных системах используются методы, отличные от тех и других. Я затрудняюсь сказать, к примеру, какое влияние распознавание изображений может оказать на методы программирования. То же самое справедливо в отношении распознавания речи. При разработке программ трудно решить, что именно сказать, а не собственно сказать. Никакое облегчение выражения не может дать больше, чем незначительные выгоды.
Методы экспертных систем ИИ-2 заслуживают отдельного параграфа.
Экспертные системы. Наиболее развитой и широко применяемой частью искусственного интеллекта являются экспертные системы. Многие ученые в области программирования напряженно трудятся над применением этой технологии в средах разработки программного обеспечения.5 В чем состоит идея, и каковы перспективы?
Экспертная система - это программа, содержащая обобщенный генератор выводов и базу правил, предназначенную для приема входных данных и допущений и исследования логических следствий через заключения, выводимые из базы правил, предоставляющая заключения и рекомендации и предлагающая пользователю объяснение полученных результатов путем обратного прослеживания своих рассуждений. Помимо чисто детерминированной логики, генератор выводов обычно может работать с нечеткими или вероятностными данными.
Такие системы предоставляют некоторые явные преимущества перед запрограммированными алгоритмами решения тех же задач:
- Технология генератора выводов разрабатывается независимо от применения и используется затем во многих приложениях.
- Изменяемые части специфических для приложения данных единообразно кодируются в базе правил. Обеспечивается инструментарий для разработки, изменения, проверки и документирования базы правил. Этим упорядочивается значительная часть сложности самого приложения.